

Ders 5 : MATLAB ile Grafik Uygulamaları

<u>Kapsam</u>

Polinomlar

Enterpolasyon

Grafikler

5.1. Polinomlar

5.1.1. Polinom Girişi

Matlab'de polinomlar katsayılarının vektörü ile tanımlanır.

Örnek: $P(x) = -6x^5 + 4x^3 - 2x^2 + 3$ polinomunu tanıtınız.

 $P = [-6\ 0\ 4\ -2\ 0\ 3]$

Dikkat edilirse x^4 ve x^1 mertebeli terimlerin katsayılarının 0 olarak girildiği görülebilir.

5.1.2. Polinomun köklerinin bulunması

Yukarıda tanımlanan P polinomunun kökleri **roots** komutu ile bulunabilir.

```
>> r = roots(P)
```

```
r =
```

0.94895

0.3643 + 0.73414i 0.3643 - 0.73414i -0.83878 + 0.28441i -0.83878 - 0.28441i

P polinomumun ilk kökü reel, diğer kökleri ise karmaşıktır.

5.1.3. Kökleri bilinen bir polinomun oluşturulması

Kökleri [-1 1] olan polinomu poly fonksiyonu ile tanımlayalım.

>> poly([-1 1])

ans =

1 0 -1 (x^2-1)

5.1.4. Polinomun belli bir noktada değerinin bulunması

P polinomunun 2 noktasındaki değerini bulalım. Bu amaçla polyval fonksiyonu kullanılacaktır.

```
>> polyval(P,2)
```

ans =

-165

5.1.5. Polinomun bir tanım aralığında değerlerinin bulunması

P polinomunun 0 ile 5 arasındaki değerlerini hesaplayalım.

```
>> polyval(P,1:5)
```

ans =

-1 -165 -1365 -5917 -18297

5.1.6. Polinomun türevinin alınması

P polinomunun türevini polyder fonksiyonu ile hesaplayalım.

>> polyder(P)

ans =

-30 0 12 -4 0

Dolayısıyla, P polinomunun türevi : $-30x^4+12x^2-4x$

5.1.7. Polinomun integralinin alınması

P polinomunun integralini polyint fonksiyonu ile hesaplayalım. İntegrasyon sabiti 3 ise;

```
>> polyint(P,3)
```

ans =

-1 0 1 -0.66667 0 3 3

Dolayısıyla, P polinomunun integrasyon sabitinin 3 olması durumunda integrali:

 $-x^{6}+x^{4}-0.67x^{3}+3x+3$

5.1.8. İki polinomun çarpımı

 $(x+1)(x^2)$ carpimini conv fonksiyonu ile hesaplayalım.

```
>> conv([1 1], [1 0 0])
```

ans =

1 0 0 (x^3+x^2) 1

5.1.9. Polinom Bölümü

 $x^{3}+x^{2}+1$ polinomunu x^{2} 'ye deconv fonksiyonu ile bölelim. >> [a,b] = deconv([1 1 0 1],[1 0 0])a = 1 1 b = 0 0 0 1 Burada a bölümü ve b ise kalanı göstermektedir.

5.2. Aradeğer bulma hesabı (Enterpolasyon)

5.2.1. Bir boyutlu aradeğer bulma: interp1()

Amerika Birleşik Devletlerinde 1900 ile 1990 arasında 10 yılda bir tekrarlanan nüfus sayımının

sonuçları t ve p vektörleriyle verilmiştir.

t = 1900:10:1990;p = [75.995 91.972 105.711 123.203 131.669... 150.697 179.323 203.212 226.505 249.633];

1975 yılında ABD nüfusunu hesaplayınız.

```
interp1(t,p,1975)
ans =
    214.8585
```

Çoğunlukla yukarıdaki tipteki bilgiler tek tabloda özetlenir. Aynı işlemi aşağıda tekrar edelim.

```
tab =
    1950 150.697
    1960 179.323
    1970 203.212
    1980 226.505
    1990 249.633
p = interpl(tab(:,1),tab(:,2),1975)
p =
    214.8585
```

Ara değer hesabında kullanılan yöntemler:

- linear : Doğrusal ara değer bulmakta kullanılır.
- nearest : Yakın olan değeri seçer.
- spline : Ara değer cubic spline yöntemi ile hesaplanır.
- cubic : Ara değer cubic Hermite yöntemi ile hesaplanır

Şimdi 1900-1990 arası nüfus artışının grafiğini çizdirelim.

```
x = 1900:1:2000;
y = interpl(t,p,x,'spline');
plot(t,p,'o',x,y)
```


Ara değer bulmada kullanılan yöntemler extrapolasyon işleminde de kullanılabilir.

Örnek olarak, 1990 ile 2000 yılları arasında nüfus artışının grafiğini çizdirelim.

```
x = 1900:1:2000;
y = interpl(t,p,x,'spline');
plot(t,p,'o',x,y)
```


5.2.3. Minimum kareler yöntemiyle polinoma uydurma, polyfit

Aşağıda verilen x ve y değerlerinden 3. dereceden bir polinom geçirelim.

» x=[-2 -1 1 3];

» y=[16 1 0 -2];

» polyfit(x,y,3) %% Burada 3 polinomun derecesini vermektedir.

ans =

-0.9917 2.8500 0.4917 -2.3500

 $-0.9917x^{3} + 2.85x^{2} + 0.4917x - 2.35$

5.3. Grafik Çizdirme

5.3.1. Kartezyen Koordinatlarında 2 Boyutlu Çizim

 $[0 2\pi]$ tanım aralığında sin(θ) grafiğini çizelim.

>> plot(0:0.01:2*pi,sin(0:0.01:2*pi))

Şimdi grafiğin x eksenini düzenleyelim. İlk aşamada her pi/2 noktasına bir çentik atalım ve

>> set(gca,'XTick',0:pi/2:2*pi)

>> set(gca,'XTickLabel',{'0','pi/2','pi','3pi/2','2pi'})

Grafiğin ve eksenlerinin isimlerini yerleştirelim. Matlab'de kullanılan semboller bu örneğin sonundaki tabloda verilmiştir.

ylabel('sin(\Theta)')

title('sin(\Theta)')

text komutu ile Grafiğin üzerinde pi/4 noktasını işaretleyelim.

text(pi/4,sin(pi/4),'\leftarrow sin(\pi\div4)', 'HorizontalAlignment','left')

Şimdi grid çizgilerini yerleştirelim.

Bu grafiğin üzerine $cos(\theta)$ grafiğini yeşil renkte 2 kalınlığında kesikli çizgiler ile çizdirelim.

hold on

plot(0:0.01:2*pi,cos(0:0.01:2*pi),'--g','Linewidth',2)

hold off

Matlab'de çizgileri ve nokta işaretleyicileri biçimlemek için kullanılan komutlar Tablo 4.2'de verilmiştir.

Character Sequence	Symbol	Character Sequence	Symbol	Character Sequence	Symbol
\alpha	α	\upsilon	υ	\sim	~
\beta	β	\phi	¢	\leq	≤
\gamma	γ	\chi	X	\infty	80
\delta	δ	\psi	Ψ	\clubsuit	*
\epsilon	3	\omega	ω	\diamondsuit	•
\zeta	ζ	\Gamma	Γ	\heartsuit	•
\eta	η	\Delta	Δ	\spadesuit	*
\theta	θ	\Theta	Θ	\leftrightarrow	\leftrightarrow
\vartheta	9	\Lambda	Λ	\leftarrow	←
\iota	ι	\Xi	Ξ	\uparrow	1
\kappa	κ	\Pi	П	\rightarrow	\rightarrow
\lambda	λ	\Sigma	Σ	\downarrow	¥
\mu	μ	\Upsilon	Y	\circ	0
\nu	ν	\Phi	Φ	\pm	±
\xi	ξ	\Psi	Ψ	/ äed	≥
\pi	π	\Omega	Ω	\propto	œ
\rho	ρ	\forall	A	\partial	ð
\sigma	σ	\exists	Э	\bullet	•
\varsigma	ς	\ni	э	\div	÷
\tau	τ	\cong	≅	\neq	ŧ
\equiv	≡	\approx	*	\aleph	8
\ Im	3	\Re	R	\աp	Þ
\otimes	8	\oplus	Ð	\oslash	Ø
\cap	\cap	\cup	U	\supseteq	⊇
\supset	⊃	\subseteq	⊆	\subset	C
\ int	ſ	\in	E	١٥	0
\rfloor]	\lceil	Γ	\nabla	V
\lfloor	L	\cdot		\ldots	
\perp	L	\neg	-	\prime	
\wedge	^	\times	x	\0	ø
\rceil	1	\surd	1	\mid	1
lvee	v	\warpi	ល	\copyright	©
\langle	<	\rangle	>		

Line Style Specifiers

Specifier	Line Style
-	Solid line (default)
	Dashed line
:	Dotted line
	Dash-dot line

Marker Specifiers

Specifier	Marker Type		
+	Plus sign		
0	Circle		
*	Asterisk		
•	Point		
х	Cross		
'square' Of s	Square		
'diamond' Or d	Diamond		
^	Upward-pointing triangle		
v	Downward-pointing triangle		
>	Right-pointing triangle		
<	Left-pointing triangle		
'pentagram'Orp	Fi∨e-pointed star (pentagram)		
'hexagram'orh	Six-pointed star (hexagram)		

Color Specifiers

Specifier	Color
r	Red
g	Green
b	Blue
c	Cyan
m	Magenta
У	Yellow
k	Black
W	White

Tablo 5.2. Çizgi ve nokta biçimleme komutları

Biçimleme örnekleri:

Sin(x), Sin(x-pi/2) ve Sin(x-pi) fonksiyonlarının grafiklerini değişik çizgi ve nokta biçimleri kullanarak çiziniz. Lejantda fonksiyonların isimlerini gösterin.

t = 0:pi/20:2*pi;

plot(t,sin(t),'-.r*')

hold on

```
plot(t,sin(t-pi/2),'--mo')
```

plot(t,sin(t-pi),':bs')

hold off

```
legend('sin(x)', 'sin(x-pi/2)', 'sin(x-pi)')
```


Benzer bir uygulamayı sin(2x) fonksiyonu için yapalım.

plot(t,sin(2*t),'-mo',...

'LineWidth',2,...

'MarkerEdgeColor','k',...

'MarkerFaceColor',[.49 1 .63],...

'MarkerSize',12)

5.3.2. Polar Koordinatlarda 2 Boyutlu Çizim

 $r = sin 2\theta$ nın grafiğini çizdirelim.

theta = linspace(0,2*pi)

r = sin(2*theta)

polar(r,theta)

5.3.3. 3 boyutlu çizgi grafiği

3 boyutlu bir helis çizdirelim

```
t = 0:pi/50:10*pi;
plot3(sin(t),cos(t),t)
grid on
axis square
```


5.3.4. 3 boyutlu ağ grafiği

 $z = xe^{-x^2-y^2}$ fonksiyonun ağ grafiğini çizdirelim.

[x,y] = meshgrid(-2:.1:2, -2:.1:2); >> z = x .* exp(-x.^2 - y.^2); >> mesh(z)

5.3.5. 3 boyutlu yüzey grafiği

 $z = xe^{-x^2-y^2}$ fonksiyonun yüzey grafiğini çizdirelim.

```
[x,y] = meshgrid(-2:.1:2, -2:.1:2);
>> z = x .* exp(-x.^2 - y.^2);
>> surf(z)
```


5.3.6. 3 boyutlu perde grafiği

 $z = xe^{-x^2-y^2}$ fonksiyonun perde grafiğini çizdirelim.

5.3.7 Kontur grafiği

 $z = xe^{-x^2-y^2}$ fonksiyonun kontur grafiğini çizdirelim.

[x,y] = meshgrid(-2:.1:2, -2:.1:2); >> z = x .* exp(-x.^2 - y.^2); >> contour(z)

>> meshc(z)

Uygulama:

Aşağıda koordinatları verilmiş noktalardan bir yüzey geçiriniz.

xyz = [0 0 0;500 0 0; 350 300 20; 0 500 0; 500 400 0; 100 400 -30; 250 250 50]

x = xyz(:,1); y = xyz(:,2); z = xyz(:,3)

xlin = linspace(min(x), max(x));

ylin = linspace(min(y), max(y));

[XI,YI] = meshgrid(xlin,ylin);

ZI = griddata(x,y,z,XI,YI,'cubic');

surfc(XI,YI,ZI)

axis equal

